Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 29, 2026
-
Polymers under nanoconfinement can exhibit large alterations in dynamics from their bulk values due to an interface effect. However, understanding the interface effect remains a challenge, especially in the ultrafine nanoconfinement region. In this work, we prepare new geometries with ultrafine nanoconfinement ∼10nm through controlled distributions of the crystalline phases and the amorphous phases of a model semi-crystalline polymer, i.e., the polylactic acid. The broadband dielectric spectroscopy measurements show that ultrafine nanoconfinement leads to a large elevation in the glass transition temperature and a strong increment in the polymer fragility index. Moreover, new relaxation time profile analyses demonstrate a spatial gradient that can be well described by either a single-exponential decay or a double-exponential decay functional form near the middle of the film with a collective interface effect. However, the dynamics at the 1–2 nm vicinity of the interface exhibit a power-law decay that is different from the single-exponential decay or double-exponential decay functional forms as predicted by theories. Thus, these results call for further investigations of the interface effect on polymer dynamics, especially for interfaces with perturbed chain packing.more » « less
An official website of the United States government
